Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 928: 172259, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38631646

ABSTRACT

The reuse of treated wastewater (TWW) in agriculture for crop irrigation is desirable. Crop responses to irrigation with TWW depend on the characteristics of TWW and on intrinsic and extrinsic soil properties. The aim of this study was to assess the response of tomato (Solanum lycopersicum L.) cultivated in five different soils to irrigation with TWW, compared to tap water (TAP) and an inorganic NPK solution (IFW). In addition, since soil microbiota play many important roles in plant growth, a metataxonomic analysis was performed to reveal the prokaryotic community structures of TAP, TWW and IFW treated soil, respectively. A 56-days pot experiment was carried out. Plant biometric parameters, and chemical, biochemical and microbiological properties of different soils were investigated. Shoot and root dry and fresh weights, as well as plant height, were the highest in plants irrigated with IFW followed by those irrigated with TWW, and finally with TAP water. Plant biometric parameters were positively affected by soil total organic carbon (TOC) and nitrogen (TN). Electrical conductivity was increased by TWW and IFW, being such an increase proportional to clay and TOC. Soil available P was not affected by TWW, whereas mineral N increased following their application. Total microbial biomass, as well as, main microbial groups were positively affected by TOC and TN, and increased according to the following order: IFW > TWW > TAP. However, the fungi-to-bacteria ratio was lowered in soil irrigated with TWW because of its adverse effect on fungi. The germicidal effect of sodium hypochlorite on soil microorganisms was affected by soil pH. Nutrients supplied by TWW are not sufficient to meet the whole nutrients requirement of tomato, thus integration by fertilization is required. Bacteria were more stimulated than fungi by TWW, thus leading to a lower fungi-to-bacteria ratio. Interestingly, IFW and TWW treatment led to an increased abundance of Proteobacteria and Acidobacteria phyla and Balneimonas, Rubrobacter, and Steroidobacter genera. This soil microbiota structure modulation paralleled a general decrement of fungi versus bacteria abundance ratio, the increment of electrical conductivity and nitrogen content of soil and an improvement of tomato growth. Finally, the potential adverse effect of TWW added with sodium chloride on soil microorganisms depends on soil pH.


Subject(s)
Agricultural Irrigation , Microbiota , Soil Microbiology , Soil , Solanum lycopersicum , Waste Disposal, Fluid , Wastewater , Soil/chemistry , Agricultural Irrigation/methods , Waste Disposal, Fluid/methods , Nitrogen/analysis , Agriculture/methods
2.
Chemosphere ; 349: 140859, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38048828

ABSTRACT

Volatile fatty acids (VFA) from sewage sludge represent an excellent recovered resource from wastewater treatment. This study investigated four sludge pre-treatments (namely, potassium permanganate - KMnO4, initial pH = 10, initial pH = 2.5 and low-temperature thermal hydrolysis) by operating batch reactors under acidogenic fermentation conditions. Results revealed that 0.1 g KMnO4/g of total suspended solids represents the best pre-treatment obtaining up to 2713 mgCOD L-1 and 452 mgCOD/g of volatile suspended solids. These results also paralleled metataxonomic analysis highlighting changes in prokaryotic microbial structures of sewage sludge of the batch fermentations subjected to the different pre-treatments.


Subject(s)
Bioreactors , Sewage , Fermentation , Sewage/chemistry , Fatty Acids, Volatile , Hydrolysis , Hydrogen-Ion Concentration
3.
Foodborne Pathog Dis ; 21(1): 10-18, 2024 01.
Article in English | MEDLINE | ID: mdl-37922428

ABSTRACT

Subclinical mastitis represents one of the most contagious diseases affecting animals involved in dairy production systems. Although coagulase-negative staphylococci (CoNSs) have been considered minor pathogens for many years, they have recently emerged as opportunistic pathogens in mastitis disorders. The objectives of this work were to assess the antimicrobial resistance profile and the ability to produce a biofilm in comparison with a reference strain and to search for genes related to biofilm production, antimicrobial resistance, and enterotoxins in 18 isolates of Staphylococcus species from the milk of sheep with subclinical mastitis, collected from different Sicilian farms. This knowledge is essential to provide basic information on the pathogenicity and virulence of staphylococcal species and their impact on animal health. All isolates were resistant to ampicillin, 88.8% to streptomycin, 77.7% to gentamicin, 44.4% to chloramphenicol, 27.7% to erythromycin, and 11.1% to tetracycline, and two isolates were strong biofilm producers. Antibiotic resistance gene profiling showed that 16.6% of isolates possess the blaZ gene, whereas the search of biofilm-associated genes revealed the occurrence of the sasC gene in 33.3% of isolates, the ica gene in 27.7%, and bap and agr (accessory gene regulator) genes in 16.6% of isolates. Altogether, the results of this study indicate that CoNSs can acquire virulence genes and could have a role as pathogens in subclinical mastitis.


Subject(s)
Mastitis, Bovine , Staphylococcal Infections , Female , Animals , Sheep , Humans , Cattle , Staphylococcus , Enterotoxins/genetics , Milk , Staphylococcal Infections/veterinary , Staphylococcal Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Biofilms , Drug Resistance, Microbial , Mastitis, Bovine/epidemiology
4.
Microb Ecol ; 86(3): 1923-1933, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36805785

ABSTRACT

Microbial communities provide essential information about host ecology and could be helpful as a tool to improve species conservation efforts. However, microbes can also infect and compromise the host development process and viability. Caretta caretta is the most widespread marine turtle species in the Mediterranean basin and is the only species of sea turtle nesting along the Italian coasts. Little is known about the microbiota composition of the nest of sea turtles and its correlation with hatching failures. In this study, the microbial composition of two nests of C. caretta featuring different rates of hatching success from a nesting beach in Lampedusa (Italy) was analyzed and compared. The bacterial community was determined using culture-dependent methods and next-generation sequencing based on 16S rRNA gene metabarcoding analysis. Our results showed five dominant bacterial phyla (Proteobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, and Firmicutes) and indicated different bacterial families (Pseudomonadaceae and Brucellaceae) as likely causes of hatching failures. Besides, our findings demonstrated the nests' active role in modulating the sand's bacterial communities. This study suggests microbiological analysis could be a valuable tool in monitoring nests to take preventive actions and reduce hatching failures.


Subject(s)
Microbiota , Turtles , Animals , RNA, Ribosomal, 16S/genetics , Ecology , Bacteria/genetics
5.
Microorganisms ; 10(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296349

ABSTRACT

Conversion of wastewater treatment plants into biorefineries is a sustainable alternative for obtaining valuable compounds, thus reducing pollutants and costs and protecting the environment and human health. Under specific operating conditions, microbial fermentative products of sewage sludge are volatile fatty acids (VFA) that can be precursors of polyhydroxyalkanoate thermoplastic polyesters. The role of various operating parameters in VFA production has yet to be elucidated. This study aimed to correlate the levels of VFA yields with prokaryotic microbiota structures of sewage sludge in two sets of batch fermentations with an initial pH of 8 and 10. The sewage sludge used to inoculate the batch fermentations was collected from a Sicilian WWTP located in Marineo (Italy) as a case study. Gas chromatography analysis revealed that initial pH 10 stimulated chemical oxygen demands (sCOD) and VFA yields (2020 mg COD/L) in comparison with initial pH 8. Characterization of the sewage sludge prokaryotic community structures-analyzed by next-generation sequencing of 16S rRNA gene amplicons-demonstrated that the improved yield of VFA paralleled the increased abundance of fermenting bacteria belonging to Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes phyla and, conversely, the reduced abundance of VFA-degrading strains, such as archaeal methanogens.

6.
Bioresour Technol ; 342: 125853, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34536841

ABSTRACT

The aim of this work was to study the effect of volatile suspended solid (VSS) and pH on volatile fatty acids (VFA) production from waste activated sludge (WAS) fermentation by means of batch tests. The final goal was to gain insights to enhance VFA stream quality, with the novelty of using WAS with high sludge retention time. Results revealed that the optimum conditions to maximize VFAs and minimize nutrients and non-VFA sCOD are a VSS concentration of 5.9 g/L and initial pH adjustment to pH 10. The WAS bacterial community structures were analysed according to Next Generation Sequencing (NGS) of 16S rDNA amplicons. The results revealed changes of bacterial phyla abundance in comparison with the batch test starting condition.


Subject(s)
Fatty Acids, Volatile , Sewage , Bacteria , Bioreactors , Fermentation , Hydrogen-Ion Concentration
7.
Life (Basel) ; 11(7)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206853

ABSTRACT

Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system, caused by a combination of genetic and environmental factors. In recent years, a role in MS pathogenesis was assigned to the gut microbiota. However, different signatures of gut dysbiosis have been shown to depend on environmental factors, like diet and lifestyle. In this study, we compared the gut microbiome in MS patients and their household healthy relatives sharing lifestyle and environmental factors. Faecal metagenomic DNA was extracted and the V3-V4 regions of the conserved bacterial 16S ribosomal RNA gene were amplified and sequenced. While overall bacterial communities were similar, specific families differed between healthy and MS subjects. We observed an increase in Ruminococcaceae, Christensenellaceae, Desulfovibrionaceae, Clostridiales, and Family XIII in MS patients, while Bacteroidaceae, Tannerellaceae, Veillonellaceae, and Burkholderiaceae were more abundant in healthy controls. In addition, principle coordinate analysis showed that the gut microbiome of all MS patients formed a cluster being less diverse than the household relatives and that gut microbiota of MS patients with EDSS 4.5-7 formed a distinct cluster in respect to their controls. Overall, our study is consistent with the hypothesis that MS patients have gut microbial dysbiosis and evidenced the importance of environmental factors in shaping the gut microbiome.

SELECTION OF CITATIONS
SEARCH DETAIL
...